Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Sci Total Environ ; 879: 163191, 2023 Jun 25.
Article in English | MEDLINE | ID: covidwho-2268639

ABSTRACT

Pandemics greatly affect transportation, economic and household activities and their associated air pollutant emissions. In less affluent regions, household energy use is often the dominant pollution source and is sensitive to the affluence change caused by a persisting pandemic. Air quality studies on COVID-19 have shown declines in pollution levels over industrialized regions as an immediate response to pandemic-caused lockdown and weakened economy. Yet few have considered the response of residential emissions to altered household affluence and energy choice supplemented by social distancing. Here we quantify the potential effects of long-term pandemics on ambient fine particulate matter pollution (PM2.5) and resulting premature mortality worldwide, by comprehensively considering the changes in transportation, economic production and household energy use. We find that a persisting COVID-like pandemic would reduce the global gross domestic product by 10.9 % and premature mortality related to black carbon, primary organic aerosols and secondary inorganic aerosols by 9.5 %. The global mortality decline would reach 13.0 % had the response of residential emissions been excluded. Among the 13 aggregated regions worldwide, the least affluent regions exhibit the greatest fractional economic losses with no comparable magnitudes of mortality reduction. This is because their weakened affluence would cause switch to more polluting household energy types on top of longer stay-at-home time, largely offsetting the effect of reduced transportation and economic production. International financial, technological and vaccine aids could reduce such environmental inequality.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Humans , Pandemics/prevention & control , COVID-19/epidemiology , Communicable Disease Control , Air Pollutants/analysis , Air Pollution/analysis , Particulate Matter/analysis , Environmental Monitoring
2.
Sci Adv ; 7(26)2021 Jun.
Article in English | MEDLINE | ID: covidwho-1288337

ABSTRACT

Lockdowns during the COVID-19 pandemic provide an unprecedented opportunity to examine the effects of human activity on air quality. The effects on fine particulate matter (PM2.5) are of particular interest, as PM2.5 is the leading environmental risk factor for mortality globally. We map global PM2.5 concentrations for January to April 2020 with a focus on China, Europe, and North America using a combination of satellite data, simulation, and ground-based observations. We examine PM2.5 concentrations during lockdown periods in 2020 compared to the same periods in 2018 to 2019. We find changes in population-weighted mean PM2.5 concentrations during the lockdowns of -11 to -15 µg/m3 across China, +1 to -2 µg/m3 across Europe, and 0 to -2 µg/m3 across North America. We explain these changes through a combination of meteorology and emission reductions, mostly due to transportation. This work demonstrates regional differences in the sensitivity of PM2.5 to emission sources.

SELECTION OF CITATIONS
SEARCH DETAIL